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Abstract 

Arterial Blood Gas (ABG) analysis plays a pivotal role in diagnosing respiratory and metabolic imbalances 

in critically ill patients. Traditional manual interpretation methods are inherently time- consuming and susceptible 

to human error, thereby motivating the development of automated computational approaches to streamline 

diagnostics. The advent of machine learning, particularly neural networks, offers promising solutions for 

enhancing diagnostic accuracy and reliability. This study investigates the comparative efficacy of two neural 

network architectures: a Simple Neural Network (Simple NN) with homogeneous activation functions and an 

Augmented Neural Network (Augmented NN) that integrates heterogeneous activation functions and dropout 

regularization to mitigate overfitting. The framework leverages ABG datasets comprising key physiological 

parameters such as pH, PaCO₂, and HCO₃ were collected in real-time at Balaji Hospital. Training protocols 

utilized categorical cross-entropy loss with ReLU activation for the Simple NN, while the Augmented NN 

incorporated a combination of ReLU, tanh, sigmoid, and softmax activations across its layers. Dropout layers 

were strategically integrated into the Augmented NN to improve generalization. Results demonstrate that the 

Augmented NN achieves superior performance, with a validation accuracy of 94%, underscoring its robustness 

and predictive reliability. This study contributes a critical evaluation of neural network configurations for medical 

diagnostics, advancing the application of machine learning in healthcare and paving the way for future research 

in automated diagnostic tools. 
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1 Introduction 

Arterial Blood Gas (ABG) analysis is a cornerstone diagnostic tool in assessing and managing respiratory 

and metabolic disorders, particularly in critically ill patients. The conventional approach, reliant on manual 

interpretation by clinicians, poses significant challenges such as inter-observer variability, inefficiency, and the 

potential for error. These limitations necessitate the exploration of computational methodologies to enhance the 

accuracy, consistency, and efficiency of ABG analysis [1,7]. Machine learning, particularly deep learning, offers 

transformative potential in automating data interpretation, minimizing human error, and optimizing diagnostic 

processes. This study centers on evaluating two neural network architectures with distinct configurations: The 

Simple Neural Network (Simple NN) employs a homogeneous activation strategy for straightforward 

implementation, while the Augmented Neural Network (Augmented NN) integrates diverse activation functions 

coupled with dropout regularization to enhance generalization and robustness [12]. By leveraging ABG datasets 

are collected in real time for varying physiological conditions, this research elucidates the impact of architectural 

differences on performance metrics, ultimately contributing to the development of reliable diagnostic systems and 

advancing machine learning applications in critical care [8,9,13]. 
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2 Literature Survey 

 

Srivastava et al. (2014)[1] Introduced Dropout, a regularization technique that prevents overfitting by 

randomly deactivating neurons during training, significantly improving model generalization. This method has 

been widely adopted in deep learning architectures for enhancing robustness. LeCun et al. (1998) [2] Pioneered 

CNNs for document recognition, laying the foundation for modern deep learning techniques and influencing a 

wide range of computer vision applications. Their work demonstrated the efficiency of hierarchical feature 

extraction in image processing. Chollet (2017) [3] Proposed Xception, an architecture utilizing depthwise 

separable convolutions to enhance computational efficiency and performance over traditional CNNs. This 

approach led to improvements in deep network performance while reducing computational complexity. 

Kingma and Ba (2014) [4] Developed Adam, an adaptive optimization algorithm combining momentum-based 

techniques with per-parameter learning rates, making it widely adopted in deep learning. The algorithm has 

become a standard for training neural networks due to its efficiency and adaptability. Paviglianiti et al. (2022)[5] 

Compared multiple deep learning techniques for arterial blood pressure prediction, showcasing the effectiveness 

of AI in physiological monitoring. Their study highlighted the potential of machine learning models in real-time 

health assessments. Shayan et al. (2020)[6] Applied neural networks to predict arterial blood gas (ABG) values in 

trauma victims, demonstrating AI’s potential in emergency medical care. Their research emphasized the role of 

AI in improving early diagnosis and intervention. 

 
3 Materials and Methods 

This research utilized ABG datasets featuring key parameters such as pH, PaCO2, and HCO3,               

categorized into four imbalance types: respiratory acidosis, metabolic acidosis, respiratory alkalosis, and 

metabolic alkalosis. Data preprocessing involved meticulous feature normalization using Standard Scaler and label 

encoding via one-hot encoding [12]. The datasets were split into training, validation, and testing subsets, ensuring 

unbiased evaluation. Both models were evaluated based on accuracy, loss metrics, and statistical significance 

using paired t-tests, facilitating a rigorous comparison of the architectures under consideration [10,11]. 

 
4 Framework Proposed 

The proposed framework comprises two distinct neural network architectures. The Simple NN relies 

exclusively on homogeneous ReLU activation across all layers, optimized with categorical cross-entropy loss and 

the Adam optimizer. In contrast, the Augmented NN employs heterogeneous activation functions strategically: 

ReLU for input layers to capture basic interactions, tanh for intermediate layers to model complex nonlinearities, 

sigmoid for feature interactions, and softmax for output classification. Dropout layers are integrated after each 

dense layer to mitigate overfitting and enhance generalization. Early stopping is implemented to prevent 

overtraining once validation loss stagnates, ensuring computational efficiency while maintaining optimal 

performance. 
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Summary: The pseudocode outlines a step-by-step process for implementing the Augmented Neural Network, 

detailing data preprocessing, model architecture, training protocols, and evaluation methods to ensure robust pre- 

dictive performance. 

 
5 Experimental Setup 

The experiments were conducted using ABG datasets on a GPU-enabled system to ensure computational efficiency. 

Key steps included: 

 

Data Preparation: The ABG dataset was preprocessed by normalizing features (pH, PaCO2, and HCO3) and 

encoding imbalance types using one-hot encoding. The dataset was then split into training (80%), validation (10%), 

and test (10%) subsets. 

 

Model Training: Both architectures, Simple NN and Augmented NN, were trained using Tensor Flow and 

Keras. The training incorporated categorical cross-entropy loss and the Adam optimizer. Early stopping was used 

to halt training upon stagnation of validation loss. 

 

Evaluation Metrics: The performance of the models was assessed based on accuracy and loss. Paired t- tests 

were performed to evaluate the statistical significance of differences in performance metrics between the two 

architectures. 

 

The code implementation followed a structured workflow to ensure reproducibility. Hyper parameter tuning 

was carried out for optimal performance. 

 
6 Results and Discussion 

As shown in Figure 1, the training and validation accuracy demonstrate a steady improvement over the epochs, 

indicating effective learning and generalization of the Augmented Neural Network. The trend lines reveal a 

significant enhancement in validation accuracy compared to the Simple Neural Network architecture. 

 

Pseudocode for Augmented Neural Network: 

Input: ABG dataset with features (pH, PaCO2, HCO3) and labels 

(Imbalance types) 

Output: Trained Augmented Neural Network Model 

 

1. Preprocess data: 

a. Normalize features using StandardScaler. 

b. One-hot encode imbalance types. 

2. Split dataset into training, validation, and test subsets. 

3. Define the Augmented Neural Network architecture: 

a. Input layer with ReLU activation. 

b. Intermediate layers with tanh and sigmoid activations. 

c. Dropout layers to prevent overfitting. 

d. Output layer with softmax activation. 

4. Compile model with Adam optimizer and categorical cross-entropy loss. 

5. Train model with early stopping based on validation loss. 

6. Evaluate model on test set and calculate performance metrics. 

7. Save trained model for deployment. 
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Figure 1: Training and Validation Accuracy (Left) and Loss (Right) Over Epochs for the Augmented NN.  

Similarly, the training and validation loss, depicted in Figure 2, show a consistent decrease over time, signi- 

fying reduced errors in predictions. This trend highlights the effectiveness of heterogeneous activation functions 

and dropout regularization in the Augmented Neural Network. 
 

Figure 2: Loss Over Epochs (Left) and Accuracy Over Epochs (Right) for the Simple NN. 

 

Metric t-statistic p-value 

Training Accuracy 11.4289 0 

Validation Accuracy 9.7919 0 

Training Loss -19.5883 0 

Validation Loss -17.3651 0 
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Statistical analyses reveal substantial performance improvements following the activation configuration mod- 

ifications. Key observations include that the t-statistic of 11.4289 (p = 0.0000) confirms significant improvements 

due to heterogeneous activations. Similarly, a t-statistic of 9.7919 (p = 0.0000) underscores enhanced general- 

ization capabilities. The negative t-statistic (-19.5883, p = 0.0000) indicates effective error minimization, while a 

t-statistic of -17.3651 (p = 0.0000) affirms better model generalization. 
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